MS ID# NEURIMMINFL/2015/006635 Supplementary Material Absence of systemic oxidative stress and increased CSF prostaglandin $F_{2\alpha}$ in progressive MS M. A. Lam, PhD¹, G. J. Maghzal, PhD^{1,2}, M. Khademi, PhD³, F. Piehl, MD, PhD³, R. Ratzer, MD, PhD⁴, J. Romme Christensen, MD, PhD⁴, F. Sellebjerg, MD, PhD, DMSc⁴, T. Olsson, MD, PhD^{3*}, R. Stocker, PhD^{1,2*} ¹Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia ²School of Medical Sciences, University of New South Wales, Sydney ³Neuroimmunology Unit, Department of Clinical Neurosciences, Centre for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden ⁴Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark *These authors contributed equally to the manuscript Correspondence to: Roland Stocker, PhD Vascular Biology Division, Victor Chang Cardiac Research Institute Lowy Packer Building 450 Liverpool Road Darlinghurst NSW 2010, Australia Phone: +61 2 9295-8712; Fax: +61 2 9295 8770; Email:r.stocker@victorchang.edu.au Figure e-l. PGF₂, but not other CSF biomarkers correlates with MS disease severity. Correlation analyses of disease severity (EDSS) in MS patients with CSF content of (A) 15(S)-PGF₂, (B) 8-iso-15(S)PGF₂, (C) Chemokine (C-X-C Motif) Ligand 13 (CXCL13), (D) matrix metalloproteinase 9 (MMP9), (E) osteopontin (OPN), (F) neurofilament light chain protein NFL, (G) mononuclear cell count, (H) IgG index, and (I) albumin CSF/plasma ratio. (J) Correlation analyses of 15(S)-PGF₂ in CSF with age. (K) Comparison of the content of 15(S)-PGF₂ in CSF from patients with progressive MS compared with age-matched OND controls. (L) Effect of NSAIDs on the concentration of PGF₂ in CSF of patients with SPMS compared to OND controls. (A-J) Correlation was determined by Spearman's ranked correlation at 95% confidence interval, r_s : Spearman's coefficient of correlation. (K-L) Statistical significance was determined by Mann-Whitney. *p < 0.05 and **p < 0.01. Figure e-2. CSF PGF₂ is not associated with validated biomarkers of MS. Correlation analyses of CSF concentrations of 15(S)-PGF₂ (ng/mL) and (A) chemokine CXCL13, (B) matrix metalloproteinase 9 (MMP9), (C) osteopontin (OPN), (D) neurofilament light chain protein (NFL), (E) monoculear cell count, (F) IgG index, and (G) albumin CSF/plasma ratio. Spearman's ranked correlation at 95% confidence interval. Statistical significance was assumed when p < 0.05. Figure e-3. Plasma F_2 -isoprostanes and PGF_{2a} decrease with increasing disease severity independent of age, while the disease-associated increase in CSF PGF_{2a} likely originates from increased local enzymatic oxidation of 20:4 rather than circulating PGF_{2a} . Correlation analyses of disease severity (EDSS) with plasma concentrations (ng/mL) of (A) 15(S)- PGF_{2a} , (B) 15(R)- PGF_{2a} (C) 8-iso-15(S)- PGF_{2a} , (D) 8-iso-15(R)- PGF_{2a} (E) 5(S)- iPF_{2a} and (F) 5(R)- iPF_{2a} . (G) Correlation analyses of the plasma content (ng/mL) of 15(S)- PGF_{2a} with age. (H) Comparison of plasma content (ng/mL) of 15(S)- PGF_{2a} in MS patients and age-matched OND controls. (I-P) CSF/plasma ratio of 15(S)- PGF_{2a} , 15(R)- PGF_{2a} , 8-iso-15(S)- PGF_{2a} , 8-iso-15(R)- PGF_{2a} , 5(S)- iPF_{2a} , 5(R)- iPF_{2a} , 20:4 and albumin. Data are shown for individuals and as means \pm SEM. (A-G) Spearman's ranked correlation at 95% confidence interval. (H-P) Statistical significance determined by the Mann-Whitney test.